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Improved « expansion for three-dimensional turbulence:
Summation of nearest dimensional singularities
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An improved« expansion in thed-dimensional (d.2) stochastic theory of turbulence is constructed by
taking into account pole singularities atd→2 in coefficients of the« expansion of universal quantities.
Effectiveness of the method is illustrated by a two-loop calculation of the Kolmogorov constant in three
dimensions.
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The renormalization-group~RG! method in the theory of
turbulence is based on the stochastic Navier-Stokes equ
with a Gaussian random force@1–3#. One of the central
problems is the calculation of the Kolmogorov constantC:
the dimensionless amplitude in the scaling law@4#

S2~r !5C~ Ēr !2/3 ~1!

expressing the dependence of the second-order stru
functionS2(r ) on the relative distancer in the inertial range
r d!r !L. Here,L is the external length of turbulence,r d the
dissipative length, andĒ the energy injection rate per un
mass~which, in the steady state, coincides with the dissi
tion rate!.

There have been several attempts to solve this prob
@5–14#, but they all suffer from ambiguities in connectin
model parameters and observable quantities. Due to
there are significant discrepancies in the predicted nume
values forC ~the spread is about a factor of 2!. In this Rapid
Communication we analyze reasons of this unsatisfac
situation and present results of a calculation based both o
expression ofC in terms of universal quantities and accou
of additional singularities arising in two dimensions. Rath
unexpectedly, the analysis reveals that these singular
have a major effect on the numerical values of observa
quantities well above two dimensions. We show that a par
summation of these singularities is possible and significa
improves the numerical value obtained forC. To assess prop
erties of the expansion produced within the RG approach
have carried out the calculation in the two-loop approxim
tion ~the results of Refs.@5–14# were obtained in the one
loop approximation!.

It should be emphasized that the RG yields for the str
ture functions a representation in which the Kolmogor
power ofr is multiplied by an unknown functionw(z) of the
ratio z5r /L. In the inertial rangez!1, therefore to find the
behavior of the structure functions in this range it is nec
sary to know the asymptotics ofw(z) for z→0. The behav-
ior w(z);const corresponds to the Kolmogorov scalin
whereas anomalous scaling means thatw(z)}za with a
,0. It is not possible to determine the scaling functionw
from the RG equations and more sophisticated methods
infrared perturbation theory and short-distance expans
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with the use of renormalization of composite operators h
been used to this end@6#, but without clear-cut conclusion
yet. Experimentally the anomalous-scaling exponent in
function S2 is at least small, if not zero@15#. In the third-
order structure functionS3—which we also use in our
calculation—there is no anomalous scaling at all. Theref
we think that the factorC in Eq. ~1! may be consistently
calculated as a constant independent ofr.

In the RG approach tod-dimensional turbulence a powe
like correlation function of the random force is often use
^ f f &;D0k42d22«[df(k). In the RG framework various
quantities may then be calculated in the form of an« expan-
sion which subsequently must be extrapolated to the phys
value «52. For some important quantities the« expansion
breaks off, which for the functionS2(r ) yields the Kolmog-
orov exponent23 @as in Eq.~1!# at «52. To find the Kolmog-
orov constant the amplitude of this function has to be cal
lated, which, however, can be done only approximate
because its« expansion does not break off. In calculation
the amplitude, apart from technical difficulties, a princip
problem arises as well: the answer forS2(r ) has to be ex-
pressed in terms of the energy injection rateĒ @as in Eq.~1!#
instead of the parameterD0 of the powerlike forcing func-
tion. Different ways to treat this problem in Refs.@5–14#
have led to different one-loop values ofC.

In Ref. @7# ~see also Refs.@5,6#! the connection between
D0 and Ē was sought with the aid of the exact relation

Ē5
~d21!

2~2p!dE dk df~k!. ~2!

In the unphysical region«,2 this integral has to be cut off a
wave numbers of the order ofL[r d

21 . At fixed Ē this pro-
cedure introduces, first, dependence on« of the form D0
;(22«) in D0 ~which has to be taken into account in th
construction of the« expansion!, and second, an ambiguit
connected with the possibility to replace the upper limitL by
cL with an arbitrary coefficientc. The first feature is rathe
natural, because the powerlike forcingdf(k);(2
2«)k42d22« reproduces in the limit«→2 the realistic forc-
ing by infinitely large eddies:df(k);d(k). The second fea-
ture, however, introduces arbitrariness in the sought conn
©2003 The American Physical Society02-1
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tion betweenD0 and Ē through the coefficientc2«24, which
in turn renders the« expansion ofD0-dependent quantitie
ambiguous~in Ref. @7# the simplest choicec51 was used!.
This is a reflection of the fact that the physical content of
theory remains unaltered whenD0 is multiplied by an arbi-
trary functionF(«) with F(2)51.

Another way to fix the connection betweenD0 and Ē has
been used in Refs.@8–14#. It amounts to the use of an exa
relation ~for the physical value«52 of the falloff exponent!
which allows to connect the spectral energy flux with
integral of a third-order correlation function, the latter bei
subsequently calculated in the form of an« expansion. The
use of this relation in the unphysical region«,2 is tanta-
mount to a certain choice of the functionF(«) mentioned
above.

Thus the« expansion of the Kolmogorov constant in th
model with the powerlike forcing is not unambiguou
Therefore a better or worse agreement with the experime
value ofC at the one-loop level does not bear much mean
until a procedure for subsequent approximations has b
pointed out and the stability of obtained results checked.
the other hand, since the real value of the expansion par
eter«52 is not small, it is difficult to expect good quantita
tive results without estimating—at least approximately
higher orders of the« expansion.

In the model at hand, only quantities independent ofD0
have rigorously unambiguous dependence on« ~we will call
them universal!. Such quantities are, e.g., critical exponen
and dimensionless ratios of structure functionsSn(r ), the
skewness factorS[S3 /S2

3/2 in particular. Calculation of uni-
versal quantities with the use of the RG method and th«
expansion yields unambiguous results and cannot lea
such ‘‘paradoxes’’ as different one-loop values for the K
mogorov constant.

In view of this we have pursued the goal of finding
suitable universal quantity the physical value of which wou
be simply connected with the Kolmogorov constant, and c
culating this quantity with the aid of the RG. The skewne
factor S, connected with the Kolmogorov constant throu
the exact relationC5(24/5S)2/3 @4,16#, might serve as such
a quantity. However, in the unphysical region«,2 the struc-
ture functionS2(r ) in the model with the powerlike forcing
correlationdf(k);k42d22« contains—at«,3

2—an indepen-
dent of r UV-divergent additive term;L224«/3 @for S3(r )
this problem is absent, see below#. As a consequence,
straightforward generalization of the skewness factorS
5S3 /S2

3/2 to the region«,3
2 becomes pointless, because t

powers ofr in this definition do not cancel due to the co
stant term inS2(r ). Therefore as the desired universal qua
tity we chose the ‘‘nearest relative’’ of the skewness fact
the quantity@17#

Q~«![
r ]S2~r !/]r

uS3~r !u2/3
5

r ]S2~r !/]r

@2S3~r !#2/3
, ~3!

independent ofr in the whole region 0,«,2 which allows
us to find the physical values ofS andC as
05530
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S52F 2

3Q~2!G
3/2

, C5
3

2 F 12

d~d12!G
2/3

Q~2!. ~4!

The use ofS3(r ) in constructing universal quantities is ad
vantageous because it can be found exactly from the spe
energy balance for all«,2 in the form

S3~r !52
3~d21!G~22«!~r /2!2«23D0

~4p!d/2G~d/21«!

allowing us to avoid calculation of graphs in construction
the« expansion forS3(r ). It also confirms that passing to th
physical limit «→2, in which G~22«!;1/~22«!, requires
D0.a(22«) to yield a finite value ofS3(r ). The choice of
a consistent with Eq.~2! leads to the ‘‘45 law’’ of Kolmog-
orov: S3(r )52 4

5 Ēr @4,16#.
In the « expansionQ(«) has the structure@17,18#

Q~«!5«1/3(
k50

`

Qk~d!«k ~5!

in d.2. The RG method allows us to find successively t
coefficients ofQk(d) as a result of calculation of renorma
ization constants and scaling functions in perturbation the
~loop expansion!. In Refs.@5–14# only the one-loop approxi-
mation was used in the calculation of the Kolmogorov co
stant. A detailed account of the method of calculation and
results of the two-loop integrals has been given in Ref.@17#.
Specific results for the expansion~5! of the universal quan-
tity Q(«) for d53 may be found in Ref.@18#. The analytic
expression for the one-loop contributionQ0(d) in Eq. ~5!
is @17#

Q0~d!5
1

3
@4~d12!#1/3. ~6!

The two-loop contributionQ1(d) gives rise to integrals
which may be evaluated numerically for anyd. For d53 the
calculation of the Kolmogorov constant according to Eq.~4!
yields the valuesC(1)51.47 ~one-loop approximation! and
C(2)53.02~two-loop approximation!. Although the two-loop
correction is not small, the recommended experimental va
of C'2.0 @4,19# lies in between the values given by the tw
approximations. Hardly any more could be expected in vi
of the fact that the value of the expansion parameter is
small. Below we show that the agreement with the expe
ment may be significantly improved by an approximate
count of the high-order terms of the expansion~5!.

Analysis of the dependence of the functionsQk(d) on the
space dimensiond shows that they have singularities atd
<2. In particular, Qk(d);D2k for 2D[d22→0. This
means that in the course ofd tending to 2 the expansion~5!
necessarily will become ‘‘spoiled,’’ because the relative co
tribution of the high-order terms will grow without limit. In
the present two-loop approximation this feature shows in t
the ratioQ1(d)/Q0(d) in the limit d→` ~far away from all
singularities! is about 1

20 and monotonically grows with de
creasingd assuming atd53 the value.1

2 of which the ma-
2-2
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jor part is brought about by graphs singular in the limit 2D
5d22→0. This gives rise to hope that summation of lea
ing D singularities in Eq.~5! allows us to improve quantita
tive results of the RG theory.

In the theory of turbulence the space dimensiond52 is
exceptional from both the physical point of view~additional
conservation laws, inverse energy cascade! and the formal
procedure of UV renormalization, because in the limitd
→2 new divergences appear in the graphs of the pertu
tion theory. These divergences show as poles inD in the
coefficientsQn(d) for n>1 in Eq. ~5!. A consistent proce-
dure to deal with these divergences by an additio
renormalization—which we shall use—has been develo
and gives rise to a two-parameter~«,D! expansion@20# of all
renormalized quantities.

It should be noted that in the~«,D! expansion the reversa
of the direction of the energy cascade near two dimens
does not show. This reversal takes place on the cross
curve of zero transfer of the energy—i.e., on the borderl
between the direct and inverse energy cascades—in
(d,«) plane @21# ~instead of« the exponent of the inertial
range energy spectrumE(k);k2m is used in Ref.@21#; m
5 4

3 «21 for «<2!. The point is that the center of the~«,D!
expansion«50, d52, the final point of extrapolation«52,
d53, as well as the segment of the line passing throu
these points all lie in the region of the direct cascade
away from its borderline. Therefore in extrapolation alo
this line segment the problem of the inverse cascade doe
arise.

In Ref. @20# this two-parameter renormalization procedu
was considered an alternative to the usual« expansion. We
exploit it in a different manner—as a way to improve t
expansion~5! by carrying out an approximate summation
the high-order contributions.

To single out the leading poles, expressQk(d) as

Qk~d!5D2kqk~D!, 2D[d22, ~7!

with a regular function

qk~D!5(
l 50

`

qklD
l . ~8!

Substitution of the expressions from Eqs.~7! and ~8! in Eq.
~5! leads for the quantityQ to the representation

Q~«!5«1/3(
k50

`

(
l 50

`

~«/D!kqklD
l . ~9!

The ~«,D! expansion corresponds to the asymptotic regi
«;D→0, D/«5const. Hence the quantities («/D)k in Eq. ~9!
are not considered small and the powersD l play the role of a
formal small parameter. The quantityQ from Eq. ~9! in the
nth-order approximation is

«1/3(
k50

`

(
l 50

n21

~«/D!kqklD
l[Q«,D

(n) , n>1, ~10!
05530
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which corresponds to an approximate calculation of the
efficients ~7! of the « expansion~5! with the account ofn
terms in the sum~8!. For a RG calculation of the quantit
Q«,D

(n) in the ~«,D!-expansion scheme@20# an n-loop approxi-
mation would be needed.

Let us assume for the moment that we have carried ou
n-loop calculation in the usual« expansion thus determinin
the following partial sum of the series~5!,

«1/3(
k50

n21

Qk~d!«k[Q«
(n) , ~11!

and ann-loop calculation in the~«,D!-expansion scheme a
well, hence having determined the quantityQ«,D

(n) of Eq. ~10!.
Then we may amend the sum~11! by an approximate con
tribution of all higher powers of«k not taken into account in
Eq. ~11!. The required information of this contribution i
contained in the quantityQ«,D

(n) . To obtain the improved value
of Q we add the expressions~10! and~11!, then subtract once
the sum

dQ(n)[«1/3(
k50

n21

(
l 50

n21

~«/D!kqklD
l

which enters twice in the sum of Eqs.~10! and~11!. Thus we
arrive at the followingn-loop approximation:

Qe f f
(n)5Q«

(n)1Q«,D
(n) 2dQ(n) ~12!

for Q. Our two-loop calculation yields the result

Q«,D
(1) 52F 2~«1D!2«

3~2«13D!2G 1/3

,

Q«,D
(2)

Q«,D
(1)

5F11S 0.5181«1
1

6
D D G ~13!

for the quantitiesQ«,D
(1) , Q«,D

(2) with the subsequent expres

sions fordQ(1), dQ(2):

dQ(1)5
2

3
~2«!1/3,

dQ(2)

dQ(1)
5S 11

2«

9D D F11S 0.5181«1
1

6
D D G . ~14!

Calculating atd53 the quantityQ«
(2) from Eq. ~11! with the

aid of Eq. ~6! and the valueQ1(3).0.4748 found in Refs.
@17,18#, and substituting the result together with Eqs.~13!
and~14! in Eq. ~12! we findQe f f in first and second approxi
mation:Qe f f

(1)51.38,Qe f f
(2)51.84. Substitution of these value

in Eq. ~4! at d53 yields for the Kolmogorov constant an
the skewness factor the valuesCe f f

(1)51.79, Ce f f
(2)52.37,

Se f f
(1)520.33, Se f f

(2)520.22.
In Table I we have compared values of the Kolmogor

constant calculated according to Eq.~4! in the first and sec-
ond order of the usual« expansion (C«), the double~«,D!
2-3
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expansion (C«,D), the contributionCd in Eq. ~4! from the
correction dQ(n) in Eq. ~12! and the valueCe f f obtained
from Eqs. ~4! and ~12!. In all the cases the recommende
experimental value of the Kolmogorov constantC'2.0 lies
between the values of the first and second approximat
However, the difference between successive approximat
is rather significant both in the« expansion and in the~«,D!
expansion, let alone the leading terms of the« expansion of
the latter. For the improved« expansion, i.e., for the quantit
Ce f f5C«1C«,D2Cd calculated according to Eqs.~12! and
~4!, however, this difference is about three times sma
leading to a far better agreement with the experimental d

TABLE I. One- and two-loop values of the Kolmogorov con
stant in the« expansion (C«) and the double~«,D! expansion
(C«,D); the contributionCd in Eq. ~4! is from the correctiondQ(n)

in Eq. ~12!, and the valueCe f f is from Eqs.~4! and ~12!.

n C« C«,D Cd Ce f f

1 1.47 1.68 1.37 1.79
2 3.02 3.57 4.22 2.37
r.

z.

u-

05530
n.
ns

r
a.

In conclusion, we have shown that a proper account of
‘‘nearest singularity’’ in the coefficients of the« expansion
~5! leads to a significant improvement of the results of t
two-loop RG calculation atd53. We have analyzed the ef
fect of this procedure for otherd as well. It reduced signifi-
cantly the relative contribution of the two-loop correction
the whole range considered̀.d>2.5. At the same time
this contribution remained large atd52, which might be an
effect of singularities in the next exceptional dimensiond
51. It is also possible that this is a reflection of the proxim
ity to the zero-transfer crossover curve in dimensions cl
to 2.

Obviously, the proposed procedure of approximate su
mation of the« expansion is applicable not only to the ca
culation ofQ(«), but all universal quantities such as dime
sions of composite operators.
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